Molecular biology of adrenergic receptors in the rat and frog central nervous system.
نویسندگان
چکیده
Recent developments in the characterization of the adrenergic receptors have led to the identification and purification of the binding subunits of the various catecholamine receptors. beta-Adrenergic receptors have been identified in a wide variety of tissues by photoaffinity labeling with the antagonist [125I]p-azidobenzylcrazolol and have been purified to apparent homogeneity from several of these tissues. Thus, beta 1- and beta 2-adrenergic receptor binding sites appear to reside on peptides with molecular weights of 60,000 to 65,000. The alpha 1-adrenergic receptor binding subunit has been identified in several peripheral tissues by photoaffinity labeling with a newly developed probe (4-amino-6,7-dimethoxy-2[4(5(3-[125I]-iodo-4-azidophenyl) pentanoyl)-1-piperazinyl]-quinazoline, or [125I]APDQ). This binding site resides on a peptide with a molecular weight of 80,000. These techniques have been applied to the elucidation of the binding subunit structure of these receptors in the rat central nervous system with the result that beta 1-, beta 2-, and alpha 1-adrenergic binding sites appear to reside on peptides of similar molecular weight to those identified in peripheral tissues (i.e., 60,000-65,000 and 80,000). Using immunocytochemical techniques with antibodies raised to the frog erythrocyte, beta 2-adrenergic receptor, beta-adrenergic receptors were identified at the light microscopic level in regions of the rat and frog brain previously found by ligand binding and autoradiography to be richest in beta-adrenergic receptors. At the electron microscopic level, beta-receptor immunoreactivity was found throughout dendritic processes with local accumulations at certain postsynaptic sites. This finding is consistent with the idea that the density of the receptors might be significantly increased at postsynaptic junctions of adrenergic neurons.
منابع مشابه
Involvement of α-1-adrenergic receptors in central region of amygdala and the effects of cannabinoid agonist on inhibitory avoidance memory in male rats
Introduction: There are many similarities between memory impairment in patients suffering from Alzheimer and animals treated by Cannabinoids. The agonists of Cannabinoid receptors affect on a variety of memories and leanings. The present study aims to investigate the role of α-1-adrenergic receptors in central region of amygdala in state-dependent learning induced by WIN55,212-2 (cannabin...
متن کاملEvaluation of changes in testosterone concentration of the rat central nervous system following progesterone administration
Neurosteroids are steroids that are produced in the central nervous system (CNS). While progesterone and dehydroepiandostendione (the precursors of testosterone) are among the identified neurosteroids, it is not clear that testosterone could be considered as a neurosteroid. The testosterone synthesis has been demonstrated in the brain of castrated frog, but not in the rat brain. In the present ...
متن کاملEvaluation of changes in testosterone concentration of the rat central nervous system following progesterone administration
Neurosteroids are steroids that are produced in the central nervous system (CNS). While progesterone and dehydroepiandostendione (the precursors of testosterone) are among the identified neurosteroids, it is not clear that testosterone could be considered as a neurosteroid. The testosterone synthesis has been demonstrated in the brain of castrated frog, but not in the rat brain. In the present ...
متن کاملGABAA Receptor Subunits in Rat Testis and Sperm
Background γ-Aminobutyric acid (GABA) is considered to be the predominant inhibitory neurotransmitter in mammalian central nervous systems (CNS). There are two major classes of GABA receptors: GABAARs and GABABRs. The GABAA receptor is derived from various subunits such as alpha1-alpha 6, beta1-beta 3, gamma1-gamma 4, delta, epsilon, pi, and rho1-3. Intensive research has been performed to und...
متن کاملIonotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 6 5 Pt 2 شماره
صفحات -
تاریخ انتشار 1984